Stable complete minimal surfaces in $R^3$ are planes

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stable Complete Minimal Surfaces in R Are Planes

A proof of the statement in the title is given.

متن کامل

Complete Properly Embedded Minimal Surfaces in R3

In this short paper, we apply estimates and ideas from [CM4] to study the ends of a properly embedded complete minimal surface 2 ⊂ R3 with finite topology. The main result is that any complete properly embedded minimal annulus that lies above a sufficiently narrow downward sloping cone must have finite total curvature. In this short paper, we apply estimates and ideas from [CM4] to study the en...

متن کامل

Stable Complete Embedded Minimal Surfaces in H1 with Empty Characteristic Locus Are Vertical Planes

In the recent paper [12] we have proved that the only stable C minimal surfaces in the first Heisenberg group Hn which are graphs over some plane and have empty characteristic locus must be vertical planes. This result represents a sub-Riemannian version of the celebrated theorem of Bernstein. In this paper we extend the result in [12] to C complete embedded minimal surfaces in H with empty cha...

متن کامل

Stable Minimal Surfaces

Let M<=R be a minimal surface. A domain Z><= M is an open connected set with compact closure D and such that its boundary dD is a finite union of piecewise smooth curves. We say that D is stable if D is a minimum for the area function of the induced metric, for all variations of D which keep dD fixed. In this note we announce the following estimate of the "size" of a stable minimal surface. We ...

متن کامل

Classification of Stable Minimal Surfaces Bounded by Jordan Curves in Close Planes

We study compact stable embedded minimal surfaces whose boundary is given by two collections of closed smooth Jordan curves in close planes of Euclidean Three-Space. Our main result is a classification of these minimal surfaces, under certain natural geometric asymptotic constraints, in terms of certain associated varifolds which can be enumerated explicitely. One consequence of this result is ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Bulletin of the American Mathematical Society

سال: 1979

ISSN: 0273-0979

DOI: 10.1090/s0273-0979-1979-14689-5